Categories
Статьи

Threat hunting как правильно организовать процесс поиска злоумышленников buycvvfullzcom, best-dumpscom

В статье речь пойдет о том, что такое TH, как искать и проверять гипотезы и какие преимущества дает внедрение правильных процессов TH
Оглавление
Что такое threat hunting.
Зачем проводить threat hunting.
Каким должен быть специалист по TH.
Гипотеза поиска.
Инструменты TH.
Практика.
Гипотеза № 1.
Гипотеза № 2.
Выводы.
Согласно результатам исследования SANS 2019 Threat Hunting Survey, 57% компаний, рапортующих о внедрении у себя процесса threat hunting (TH), просто реагируют на оповещения средств автоматизированной защиты, но по сути это относится к области управления событиями и оповещениями (event and alert management), а не к TH.
В статье речь пойдет о том, что такое TH, как искать и проверять гипотезы и какие преимущества дает внедрение правильных процессов TH. Подробно рассмотрим, какие инструменты помогут в проведении «охоты», а также на практике покажем пользу описанного подхода.
Threat hunting — проактивный поиск следов взлома или функционирования вредоносных программ, которые не обнаружены стандартными средствами защиты. Аналитик не ждет, пока сработают сенсоры систем защиты, а целенаправленно ищет следы компрометации. Для этого он вырабатывает и проверяет предположения, как злоумышленники могли проникнуть в сеть. Такие проверки должны быть последовательными и регулярными.
Правильное внедрение процесса должно учитывать принципы:
Сотрудник, осуществляющий TH, априори предполагает, что система уже взломана. Его цель — найти следы проникновения.
Для поиска нужна гипотеза о том, как именно система была скомпрометирована, и ее дальнейшая проверка.
Поиск должен осуществляться итеративно, то есть после проверки очередной гипотезы, аналитик выдвигает новую и продолжает поиск.
Традиционные средства автоматизированной защиты пропускают сложные целевые атаки . Причина в том, что такие атаки часто распределены во времени, поэтому средства безопасности не могут провести корреляцию двух фаз атаки. При этом злоумышленники тщательно продумывают векторы проникновения и разрабатывают сценарии действий в инфраструктуре. Это позволяет им не совершить демаскирующих действий и выдавать свою активность за легитимную. Злоумышленники постоянно совершенствуют свои знания, покупают или разрабатывают новый инструментарий.
Особенно актуальны вопросы выявления целевых атак для организаций, которые были ранее взломаны. Согласно отчету FireEye M-Trends, 64% ранее скомпрометированных организаций вновь подверглись атаке. Получается, что больше половины взломанных компаний все еще находятся в зоне риска. Значит, нужно применять меры для раннего выявления фактов компрометации — этого можно добиться с помощью TH.
TH помогает командам ИБ:
При правильной организации процесса должна быть выделена отдельная структурная единица — отдел threat hunting. Сотрудников отдела будем называть аналитиками или специалистами по TH. Однако в российских компаниях зачастую функции TH-команды выполняет SOC. Согласно SANS, профиль навыков специалиста по TH соответствует диаграмме на рис. 1 (деления указывают уровень навыка, где 0% — абсолютное незнание области, а 100% — высококлассный эксперт в области).
Специалист также должен знать современные техники, тактики и процедуры (TTPs) проведения атак, используемых нарушителями, уметь программировать и автоматизировать рутинные задачи, иметь интуицию и навык создания гипотез поиска.
Индикаторы threat intelligence (TI-индикаторы). Простейшая гипотеза, имеющая структуру: злоумышленник использует новую модификацию утилиты X, которая имеет MD5-хеш Y.
Техники, тактики и процедуры атакующих (TTPs). Информацию про TTPs современных киберпреступников можно найти в базе MITRE ATT&CK . Пример гипотезы: злоумышленник взломал пользовательскую рабочую станцию и методом перебора пытается подобрать пароль от привилегированной учетной записи.
Аналитика автоматизированных средств обработки данных об инфраструктуре. Их данные помогут выявить аномалии. Например, с помощью систем asset management можно заметить появление нового узла в сети без ведома администраторов. Резкое увеличение объема трафика на сетевом узле тоже может стать поводом для более детального изучения этого узла.
Информация, обнаруженная в ходе проверки предыдущих гипотез.
После формулирования гипотезы необходимо определить источники данных, которые могут содержать информацию для ее проверки. Часто такие источники содержат слишком много данных, среди которых нужно найти релевантные. Таким образом, процесс TH сводится к исследованию, фильтрации и анализу огромного количества данных о происходящем в инфраструктуре. Рассмотрим, в каких источниках можно найти информацию для проверки гипотезы поиска:
Наибольшее количество релевантной информации содержится в логах и сетевом трафике. Анализировать информацию из них помогают продукты классов SIEM (security information and event management) и NTA (network traffic analysis). Внешние источники (например, TI-фиды) тоже нужно включать в процесс анализа.
Главная цель проведения TH — обнаружить взлом, который не был выявлен автоматизированными средствами защиты.
Для примера рассмотрим проверки двух гипотез. На практике покажем, как системы анализа трафика и анализа логов дополняют друг друга в процессе проверки гипотезы.
Нарушители получили учетные данные привилегированного пользователя. После этого они пытаются получить контроль над другими узлами в сети с целью попасть на хост с ценными данными. Один из методов запуска программ на удаленной системе — использование технологии Windows Management Instrumentation (WMI). Она отвечает за централизованное управление и слежение за работой различных частей компьютерной инфраструктуры. Однако создатели предусмотрели возможность применения такого подхода к компонентам и ресурсам не только отдельно взятого хоста, но и удаленного компьютера. Для этого была реализована передача команд и ответов через транспортные протоколы DCERPC.
Поэтому для проверки гипотезы нужно исследовать DCERPC-запросы. Покажем, как это можно сделать при помощи анализа трафика и SIEM-системы. На рис. 4 представлены все отфильтрованные сетевые взаимодействия по протоколу DCERPC. Для примера мы выбрали промежуток времени с 06:58 до 12:58.
На рис. 4 мы видим два дашборда. Слева перечислены узлы, которые выступали инициаторами DCERPC-соединений. Справа перечислены узлы, с которыми соединялись клиенты. Из рисунка видно, что все клиенты в сети обращаются только к контроллеру домена. Это легитимная активность, поскольку хосты, объединенные в домен Active Directory, обращаются по протоколу DCERPC к контроллеру домена для синхронизации. Она считалась бы подозрительной, если был такая коммуникация проходила между пользовательскими хостами.
Поскольку ничего подозрительного за выбранный промежуток времени не выявлено, выбираем другой. Теперь это интервал с 12:59 по 16:46. В нем мы заметили странное изменение списка хостов назначения (см. рис. 5).
В списке хостов назначения — два новых узла. Рассмотрим тот, который без DNS-имени (10.125.4.16).
Как видно из рис. 6, к нему обращается контроллер домена 10.125.2.36 (см. рис. 4), а значит, такое взаимодействие легитимно.
Далее нужно проанализировать, кто соединялся со вторым новым узлом, на рис. 5 это win-admin-01.ptlab.ru (10.125.3.10). Из названия узла следует, что это компьютер администратора. После уточнения фильтра, остаются только два узла источника сессий.
Аналогично предыдущему случаю одним из инициаторов выступил контроллер домена. Подобные сессии не вызывают подозрений, поскольку это обычное явление в среде Active Directory. Однако второй узел (w-user-01.ptlab.ru), судя по названию, пользовательский компьютер — такие подключения являются аномалиями. Если с данным фильтром перейти на вкладку «Сессии», то можно скачать трафик и посмотреть подробности в Wireshark.
В трафике можно увидеть обращение к интерфейсу IWbemServices, что свидетельствует об использовании WMI-подключения.
Причем передаваемые вызовы зашифрованы, поэтому конкретные команды неизвестны.
Чтобы окончательно подтвердить гипотезу о том, что такое взаимодействие нелегитимно, необходимо проверить хостовые логи. Можно зайти на хост и посмотреть системные логи локально, но удобнее использовать SIEM-систему.
В интерфейсе SIEM мы ввели в фильтр условие, которое оставило только логи целевого узла в момент установления DCERPC-подключения, и увидели такую картину:
В логах мы увидели точное совпадение со временем начала первой сессии (см. рис. 9), инициатор подключения — хост w-user-01. Дальнейший анализ логов показывает, что подключились под учетной записью PTLAB\Admin и запустили команду (см. рис. 12) создания пользователя john с паролем password!!!: net user john password!!! /add.
Мы выяснили, что с узла 10.125.3.10 некто по WMI от имени учетной записи PTLAB\Admin добавил нового пользователя на хост win-admin-01.ptlab.ru. При проведении реального TH на следующем шаге нужно выяснить, не является ли это административной активностью. Для этого нужно обратиться к владельцу аккаунта PTLAB\Admin и узнать, осуществлял ли он описанные действия. Поскольку рассматриваемый пример синтетический, будем считать, что данная активность нелегитимная. При проведении реального TН в случае выявления факта неправомерного использования учетной записи нужно создать инцидент и проводить детальное расследование.
Туннелирование трафика — организация канала таким образом, чтобы пакеты одного сетевого протокола (возможно, в измененном виде) передавались внутри полей другого сетевого протокола. Стандартный пример туннелирования — построение шифрованных каналов, например SSH. Шифрованные каналы обеспечивают конфиденциальность передаваемой информации и распространены в современных корпоративных сетях. Однако существуют экзотические варианты, например ICMP- или DNS-туннели. Такие туннели используются злоумышленниками, чтобы замаскировать свою активность под легитимную.
Начнем с поиска наиболее распространенного способа туннелирования трафика — через протокол SSH. Для этого отфильтруем все сессии по протоколу SSH:
На рисунке видно, что SSH-трафика в инфраструктуре нет, поэтому нужно выбрать следующий протокол, который мог бы применяться для туннелирования. Поскольку в корпоративных сетях всегда разрешен DNS-трафик, то далее рассмотрим именно его.
Если отфильтровать трафик по DNS, то можно увидеть, что у одного из узлов аномально большое количество DNS-запросов.
Отфильтровав сессии по источнику запросов, мы узнали, куда отправляется такое аномальное количество трафика и как оно распределяется между узлами назначения. На рис. 15 видно, что часть трафика уходит на контроллер домена, который выступает в роли локального DNS-сервера. Однако немалая доля запросов уходит на неизвестный хост. В корпоративной сети, построенной на Active Directory, пользовательские компьютеры для разрешения DNS-имен не должны обращаться к внешнему DNS-серверу в обход корпоративного. При обнаружении такой активности нужно выяснить, что передают в трафике и куда отправляются все эти запросы.
Если перейти во вкладку «Сессии», то можно увидеть, что передается в запросах к подозрительному серверу. Время между запросами достаточно маленькое, а самих сессий много. Такие параметры нехарактерны для легитимного DNS-трафика.
Открыв любую карточку сессии, мы видим подробное описание запросов и ответов. Ответы от сервера не содержат ошибок, однако запрашиваемые записи выглядят очень подозрительными, поскольку обычно узлы имеют более короткие и осмысленные DNS-имена.
Анализ трафика показал, что на узле win-admin-01 происходит подозрительная активность по отправке DNS-запросов. Самое время проанализировать логи сетевого узла — источника данной активности. Для этого переходим в SIEM.
Нужно найти системные логи win-admin-01 и посмотреть, что происходило в районе 17:06. Видно, что в то же время выполнялся подозрительный PowerShell-скрипт.
В логах зафиксировано, какой именно скрипт исполнялся.
Название исполненного скрипта admin_script.ps1 намекает на легитимность, но администраторы обычно дают название скриптам по конкретной функции, а тут имя — общее. Более того, скрипт находится в папке для временных файлов. Маловероятно, что важный административный скрипт окажется в папке, которую в любой момент могут очистить.
Среди событий обнаружили создание необычного криптографического класса из библиотеки Logos.Utility. Эта библиотека встречается редко и уже не поддерживается разработчиком, поэтому создание ее классов необычно. Попробуем найти проекты, которые ее используют.
Если воспользоваться поиском, можно второй же ссылкой найти утилиту, которая организует DNS-туннель и использует данный класс.
Чтобы окончательно убедиться в том, что это нужная нам утилита, поищем в логах дополнительные признаки. Так обнаружились доказательства. Первое — запуск утилиты nslookup с помощью скрипта.
Утилита nslookup.exr используется во время сетевой диагностики и редко запускается обычными пользователями. В исходных кодах утилиты виден запуск.
Второе доказательство — достаточно уникальная строка генерации случайных значений.
Если воспользоваться поиском по исходным кодам, можно увидеть именно эту строку.
Гипотеза о туннеле подтвердилась, однако осталось неясной суть выполняемых действий. В ходе последующего анализа логов мы заметили два запуска процессов.
Строки запуска найденных процессов свидетельствуют о поиске документов для скачивания. Таким образом гипотеза полностью подтвердилась, злоумышленники действительно использовали туннелирование трафика для скачивания данных.
Как показывают последние аналитические отчеты , среднее время присутствия злоумышленников в инфраструктуре остается длительным. Поэтому не ждите сигналов от средств автоматизированной защиты — действуйте проактивно. Изучайте свою инфраструктуру и современные методы атак, а также используйте исследования, которые проводят TI-команды ( FireEye , Cisco , PT Expert Security C enter ).
Я не призываю к отказу от средств автоматизированной защиты. Однако не нужно полагать, что установка и корректная настройка такой системы — финальная точка. Это лишь первый необходимый шаг. Далее нужно следить за развитием и функционированием подконтрольного сетевого окружения, держать руку на пульсе.
В этом помогут следующие советы:
Изучайте свою инфраструктуру. Выберите для себя удобный подход к управлению сетевыми активами. Нужно в любой момент быть готовым дать ответ на вопрос о том, какую функцию выполняет тот или иной узел и дать по нему информацию.
Определите наиболее важные риски и периодически проверяйте гипотезы по ним. Сети бывают разных размеров, для больших и распределенных инфраструктур очень важно выделить критически значимые узлы.
Следите за последними трендами в сфере ИБ. В частности, будьте готовы реагировать на свежие уязвимости и новые методы атак. Периодически проверяйте свои средства защиты на возможность отражения новой угрозы. Если угроза не была выявлена, сделайте из данной атаки гипотезу для TH и проверяйте ее, пока автоматизированные средства защиты не начнут ее выявлять.
Автоматизируйте рутинные задачи, чтобы осталось больше времени на применение творческого подхода и апробации нестандартных решений.
Упрощайте процесс анализа большого объема данных. Для этого полезно использовать инструменты, которые помогают аналитику увидеть происходящее в сети и на сетевых узлах как единую картину. Среди таких инструментов — платформа для обмена TI-индикаторами , система анализа трафика и SIEM-система .
Автор: Антон Кутепов, специалист экспертного центра безопасности ( PT Expert Security Center ) Positive Technologies.
Весь разбор проводился в системе анализа трафика PT Network Attack Discovery и системе управления событиями безопасности MaxPatrol SIEM .
В статье мы расскажем о наиболее интересных стартапах в области кибербезопасности, на которые следует обратить внимание.
Хотите узнать, что происходит нового в сфере кибербезопасности, – обращайте внимание на стартапы, относящиеся к данной области. Стартапы начинаются с инновационной идеи и не ограничиваются стандартными решениями и основным подходом. Зачастую стартапы справляются с проблемами, которые больше никто не может решить.
Обратной стороной стартапов, конечно же, нехватка ресурсов и зрелости. Выбор продукта или платформы стартапа – это риск, требующий особых отношений между заказчиком и поставщиком . Однако, в случае успеха компания может получить конкурентное преимущество или снизить нагрузку на ресурсы безопасности.
Ниже приведены наиболее интересные стартапы (компании, основанные или вышедшие из «скрытого режима» за последние два года).
Компания Abnormal Security, основанная в 2019 году, предлагает облачную платформу безопасности электронной почты, которая использует анализ поведенческих данных для выявления и предотвращения атак на электронную почту. Платформа на базе искусственного интеллекта анализирует поведение пользовательских данных, организационную структуру, отношения и бизнес-процессы, чтобы выявить аномальную активность, которая может указывать на кибератаку. Платформа защиты электронной почты Abnormal может предотвратить компрометацию корпоративной электронной почты, атаки на цепочку поставок , мошенничество со счетами, фишинг учетных данных и компрометацию учетной записи электронной почты. Компания также предоставляет инструменты для автоматизации реагирования на инциденты, а платформа дает облачный API для интеграции с корпоративными платформами, такими как Microsoft Office 365, G Suite и Slack.
Копания Apiiro вышла из «скрытого режима» в 2020 году. Ее платформа devsecops переводит жизненный цикл безопасной разработки «от ручного и периодического подхода «разработчики в последнюю очередь» к автоматическому подходу, основанному на оценке риска, «разработчики в первую очередь», написал в блоге соучредитель и генеральный директор Идан Плотник . Платформа Apiiro работает, соединяя все локальные и облачные системы управления версиями и билетами через API. Платформа также предоставляет настраиваемые предопределенные правила управления кодом. Со временем платформа создает инвентарь, «изучая» все продукты, проекты и репозитории. Эти данные позволяют лучше идентифицировать рискованные изменения кода.
Axis Security Application Access Cloud – облачное решение для доступа к приложениям , построенное на принципе нулевого доверия. Он не полагается на наличие агентов, установленных на пользовательских устройствах. Поэтому организации могут подключать пользователей – локальных и удаленных – на любом устройстве к частным приложениям, не затрагивая сеть или сами приложения. Axis вышла из «скрытого режима» в 2020 году.
BreachQuest, вышедшая из «скрытого режима» 25 августа 2021 года, предлагает платформу реагирования на инциденты под названием Priori. Платформа обеспечивает большую наглядность за счет постоянного отслеживания вредоносной активности. Компания утверждает, что Priori может предоставить мгновенную информацию об атаке и о том, какие конечные точки скомпрометированы после обнаружения угрозы.
Cloudrise предоставляет услуги управляемой защиты данных и автоматизации безопасности в формате SaaS. Несмотря на свое название, Cloudrise защищает как облачные, так и локальные данные. Компания утверждает, что может интегрировать защиту данных в проекты цифровой трансформации. Cloudrise автоматизирует рабочие процессы с помощью решений для защиты данных и конфиденциальности. Компания Cloudrise была запущена в октябре 2019 года.
Cylentium утверждает, что ее технология кибер-невидимости может «скрыть» корпоративную или домашнюю сеть и любое подключенное к ней устройство от обнаружения злоумышленниками. Компания называет эту концепцию «нулевой идентичностью». Компания продает свою продукцию предприятиям, потребителям и государственному сектору. Cylentium была запущена в 2020 году.
Компания Deduce , основанная в 2019 году, предлагает два продукта для так называемого «интеллектуального анализа личности». Служба оповещений клиентов отправляет клиентам уведомления о потенциальной компрометации учетной записи, а оценка риска идентификации использует агрегированные данные для оценки риска компрометации учетной записи. Компания использует когнитивные алгоритмы для анализа конфиденциальных данных с более чем 150 000 сайтов и приложений для выявления возможного мошенничества. Deduce заявляет, что использование ее продуктов снижает ущерб от захвата аккаунта более чем на 90%.
Автоматизированная платформа безопасности и соответствия Drata ориентирована на готовность к аудиту по таким стандартам, как SOC 2 или ISO 27001. Drata отслеживает и собирает данные о мерах безопасности, чтобы предоставить доказательства их наличия и работы. Платформа также помогает оптимизировать рабочие процессы. Drata была основана в 2020 году.
FYEO – это платформа для мониторинга угроз и управления доступом для потребителей, предприятий и малого и среднего бизнеса. Компания утверждает, что ее решения для управления учетными данными снимают бремя управления цифровой идентификацией. FYEO Domain Intelligence («FYEO DI») предоставляет услуги мониторинга домена, учетных данных и угроз. FYEO Identity будет предоставлять услуги управления паролями и идентификацией, начиная с четвертого квартала 2021 года. FYEO вышла из «скрытого режима» в 2021 году.
Kronos – платформа прогнозирующей аналитики уязвимостей (PVA) от компании Hive Pro , основанная на четырех основных принципах: предотвращение, обнаружение, реагирование и прогнозирование. Hive Pro автоматизирует и координирует устранение уязвимостей с помощью единого представления. Продукт компании Artemis представляет собой платформу и услугу для тестирования на проникновение на основе данных. Компания Hive Pro была основана в 2019 году.
Израильская компания Infinipoint была основана в 2019 году. Свой основной облачный продукт она называет «идентификация устройства как услуга» или DIaaS , который представляет собой решение для идентификации и определения положения устройства. Продукт интегрируется с аутентификацией SSO и действует как единая точка принуждения для всех корпоративных сервисов. DIaaS использует анализ рисков для обеспечения соблюдения политик, предоставляет статус безопасности устройства как утверждается, устраняет уязвимости «одним щелчком».
Компания Kameleon , занимающаяся производством полупроводников, не имеет собственных фабрик и занимает особое место среди поставщиков средств кибербезопасности. Компания разработала «Блок обработки проактивной безопасности» (ProSPU). Он предназначен для защиты систем при загрузке и для использования в центрах обработки данных, управляемых компьютерах, серверах и системах облачных вычислений. Компания Kameleon была основана в 2019 году.
Облачная платформа безопасности данных Open Raven предназначена для обеспечения большей прозрачности облачных ресурсов. Платформа отображает все облачные хранилища данных, включая теневые облачные учетные записи, и идентифицирует данные, которые они хранят. Затем Open Raven в режиме реального времени отслеживает утечки данных и нарушения политик и предупреждает команды о необходимости исправлений. Open Raven также может отслеживать файлы журналов на предмет конфиденциальной информации, которую следует удалить. Компания вышла из «скрытого режима» в 2020 году.
Компания Satori, основанная в 2019 году, называет свой сервис доступа к данным “DataSecOps”. Целью сервиса является отделение элементов управления безопасностью и конфиденциальностью от архитектуры. Сервис отслеживает, классифицирует и контролирует доступ к конфиденциальным данным. Имеется возможность настроить политики на основе таких критериев, как группы, пользователи, типы данных или схема, чтобы предотвратить несанкционированный доступ, замаскировать конфиденциальные данные или запустить рабочий процесс. Сервис предлагает предварительно настроенные политики для общих правил, таких как GDPR , CCPA и HIPAA .
Компания Scope Security недавно вышла из «скрытого режима», будучи основана в 2019 году. Ее продукт Scope OmniSight нацелен на отрасль здравоохранения и обнаруживает атаки на ИТ-инфраструктуру, клинические системы и системы электронных медицинских записей . Компонент анализа угроз может собирать индикаторы угроз из множества внутренних и сторонних источников, представляя данные через единый портал.
Основным продуктом Strata является платформа Maverics Identity Orchestration Platform . Это распределенная мультиоблачная платформа управления идентификацией. Заявленная цель Strata – обеспечить согласованность в распределенных облачных средах для идентификации пользователей для приложений, развернутых в нескольких облаках и локально. Функции включают в себя решение безопасного гибридного доступа для расширения доступа с нулевым доверием к локальным приложениям для облачных пользователей, уровень абстракции идентификации для лучшего управления идентификацией в мультиоблачной среде и каталог коннекторов для интеграции систем идентификации из популярных облачных систем и систем управления идентификацией. Strata была основана в 2019 году.
SynSaber , запущенная 22 июля 2021 года, предлагает решение для мониторинга промышленных активов и сети. Компания обещает обеспечить «постоянное понимание и осведомленность о состоянии, уязвимостях и угрозах во всех точках промышленной экосистемы, включая IIoT, облако и локальную среду». SynSaber была основана бывшими лидерами Dragos и Crowdstrike.
Traceable называет свой основной продукт на основе искусственного интеллекта чем-то средним между брандмауэром веб-приложений и самозащитой приложений во время выполнения. Компания утверждает, что предлагает точное обнаружение и блокирование угроз путем мониторинга активности приложений и непрерывного обучения, чтобы отличать обычную активность от вредоносной. Продукт интегрируется со шлюзами API. Traceable была основана в июле 2020 года.
Компания Wiz, основанная командой облачной безопасности Microsoft, предлагает решение для обеспечения безопасности в нескольких облаках, рассчитанное на масштабную работу. Компания утверждает, что ее продукт может анализировать все уровни облачного стека для выявления векторов атак с высоким риском и обеспечивать понимание, позволяющее лучше расставлять приоритеты. Wiz использует безагентный подход и может сканировать все виртуальные машины и контейнеры. Wiz вышла из «скрытого режима» в 2020 году.
Работает на CMS “1С-Битрикс: Управление сайтом”
buycvvfullzcom best-dumpscom